Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Expansion of the target of rapamycin (TOR) kinase family and function in Leishmania shows that TOR3 is required for acidocalcisome biogenesis and animal infectivity.

Identifieur interne : 001434 ( Main/Exploration ); précédent : 001433; suivant : 001435

Expansion of the target of rapamycin (TOR) kinase family and function in Leishmania shows that TOR3 is required for acidocalcisome biogenesis and animal infectivity.

Auteurs : Luciana Madeira Da Silva [États-Unis] ; Stephen M. Beverley

Source :

RBID : pubmed:20551225

Descripteurs français

English descriptors

Abstract

Target of rapamycin (TOR) kinases are key regulators of cell growth, proliferation, and structure in eukaryotes, processes that are highly coordinated during the infectious cycle of eukaryotic pathogens. Database mining revealed three TOR kinases in the trypanosomatid parasite Leishmania major, as defined by homology to the phosphoinositide 3-kinase-related kinase (PIKK) family and a signature conserved FKBP12/rapamycin-binding domain. Consistent with the essential roles of TOR complexes in other organisms, we were unable to generate null TOR1 or TOR2 mutants in cultured L. major promastigotes. In contrast, tor3(-) null mutants were readily obtained; while exhibiting somewhat slower growth, tor3(-) maintained normal morphology, rapamycin sensitivity, and differentiation into the animal-infective metacyclic stage. Significantly, tor3(-) mutants were unable to survive or replicate in macrophages in vitro, or to induce pathology or establish infections in mice in vivo. The loss of virulence was associated with a defect in acidocalcisome formation, as this unique organelle was grossly altered in tor3- mutants and no longer accumulated polyphosphates. Correspondingly, tor3- mutants showed defects in osmoregulation and were sensitive to starvation for glucose but not amino acids, glucose being a limiting nutrient in the parasitophorous vacuole. Thus, in Leishmania, the TOR kinase family has expanded to encompass a unique role in AC function and biology, one that is essential for parasite survival in the mammalian infective stage. Given their important roles in cell survival and virulence, inhibition of TOR kinase function in trypanosomatids offers an attractive target for chemotherapy.

DOI: 10.1073/pnas.1004599107
PubMed: 20551225
PubMed Central: PMC2900677


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Expansion of the target of rapamycin (TOR) kinase family and function in Leishmania shows that TOR3 is required for acidocalcisome biogenesis and animal infectivity.</title>
<author>
<name sortKey="Madeira Da Silva, Luciana" sort="Madeira Da Silva, Luciana" uniqKey="Madeira Da Silva L" first="Luciana" last="Madeira Da Silva">Luciana Madeira Da Silva</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110</wicri:regionArea>
<placeName>
<region type="state">Missouri (État)</region>
<settlement type="city">Saint-Louis (Missouri)</settlement>
</placeName>
<orgName type="university">École de médecine (Université Washington de Saint-Louis)</orgName>
</affiliation>
</author>
<author>
<name sortKey="Beverley, Stephen M" sort="Beverley, Stephen M" uniqKey="Beverley S" first="Stephen M" last="Beverley">Stephen M. Beverley</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20551225</idno>
<idno type="pmid">20551225</idno>
<idno type="doi">10.1073/pnas.1004599107</idno>
<idno type="pmc">PMC2900677</idno>
<idno type="wicri:Area/Main/Corpus">001400</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001400</idno>
<idno type="wicri:Area/Main/Curation">001400</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001400</idno>
<idno type="wicri:Area/Main/Exploration">001400</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Expansion of the target of rapamycin (TOR) kinase family and function in Leishmania shows that TOR3 is required for acidocalcisome biogenesis and animal infectivity.</title>
<author>
<name sortKey="Madeira Da Silva, Luciana" sort="Madeira Da Silva, Luciana" uniqKey="Madeira Da Silva L" first="Luciana" last="Madeira Da Silva">Luciana Madeira Da Silva</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110</wicri:regionArea>
<placeName>
<region type="state">Missouri (État)</region>
<settlement type="city">Saint-Louis (Missouri)</settlement>
</placeName>
<orgName type="university">École de médecine (Université Washington de Saint-Louis)</orgName>
</affiliation>
</author>
<author>
<name sortKey="Beverley, Stephen M" sort="Beverley, Stephen M" uniqKey="Beverley S" first="Stephen M" last="Beverley">Stephen M. Beverley</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Base Sequence (MeSH)</term>
<term>Conserved Sequence (MeSH)</term>
<term>DNA, Protozoan (genetics)</term>
<term>Genes, Protozoan (MeSH)</term>
<term>Leishmania major (genetics)</term>
<term>Leishmania major (pathogenicity)</term>
<term>Leishmania major (physiology)</term>
<term>Macrophages (parasitology)</term>
<term>Mice (MeSH)</term>
<term>Mice, Inbred BALB C (MeSH)</term>
<term>Models, Molecular (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Organelles (physiology)</term>
<term>Protein Kinases (chemistry)</term>
<term>Protein Kinases (genetics)</term>
<term>Protein Kinases (physiology)</term>
<term>Protozoan Proteins (chemistry)</term>
<term>Protozoan Proteins (genetics)</term>
<term>Protozoan Proteins (physiology)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Sirolimus (pharmacology)</term>
<term>Virulence (genetics)</term>
<term>Virulence (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN des protozoaires (génétique)</term>
<term>Animaux (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Gènes de protozoaire (MeSH)</term>
<term>Leishmania major (génétique)</term>
<term>Leishmania major (pathogénicité)</term>
<term>Leishmania major (physiologie)</term>
<term>Macrophages (parasitologie)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Organites (physiologie)</term>
<term>Protein kinases (composition chimique)</term>
<term>Protein kinases (génétique)</term>
<term>Protein kinases (physiologie)</term>
<term>Protéines de protozoaire (composition chimique)</term>
<term>Protéines de protozoaire (génétique)</term>
<term>Protéines de protozoaire (physiologie)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Souris (MeSH)</term>
<term>Souris de lignée BALB C (MeSH)</term>
<term>Séquence conservée (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Virulence (génétique)</term>
<term>Virulence (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Protein Kinases</term>
<term>Protozoan Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Protozoan</term>
<term>Protein Kinases</term>
<term>Protozoan Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protein kinases</term>
<term>Protéines de protozoaire</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Leishmania major</term>
<term>Virulence</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN des protozoaires</term>
<term>Leishmania major</term>
<term>Protein kinases</term>
<term>Protéines de protozoaire</term>
<term>Virulence</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitologie" xml:lang="fr">
<term>Macrophages</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitology" xml:lang="en">
<term>Macrophages</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Leishmania major</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Leishmania major</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Leishmania major</term>
<term>Organites</term>
<term>Protein kinases</term>
<term>Protéines de protozoaire</term>
<term>Virulence</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Leishmania major</term>
<term>Organelles</term>
<term>Protein Kinases</term>
<term>Protozoan Proteins</term>
<term>Virulence</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Base Sequence</term>
<term>Conserved Sequence</term>
<term>Genes, Protozoan</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Mutation</term>
<term>Sequence Homology, Amino Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Données de séquences moléculaires</term>
<term>Gènes de protozoaire</term>
<term>Modèles moléculaires</term>
<term>Mutation</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Souris</term>
<term>Souris de lignée BALB C</term>
<term>Séquence conservée</term>
<term>Séquence d'acides aminés</term>
<term>Séquence nucléotidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Target of rapamycin (TOR) kinases are key regulators of cell growth, proliferation, and structure in eukaryotes, processes that are highly coordinated during the infectious cycle of eukaryotic pathogens. Database mining revealed three TOR kinases in the trypanosomatid parasite Leishmania major, as defined by homology to the phosphoinositide 3-kinase-related kinase (PIKK) family and a signature conserved FKBP12/rapamycin-binding domain. Consistent with the essential roles of TOR complexes in other organisms, we were unable to generate null TOR1 or TOR2 mutants in cultured L. major promastigotes. In contrast, tor3(-) null mutants were readily obtained; while exhibiting somewhat slower growth, tor3(-) maintained normal morphology, rapamycin sensitivity, and differentiation into the animal-infective metacyclic stage. Significantly, tor3(-) mutants were unable to survive or replicate in macrophages in vitro, or to induce pathology or establish infections in mice in vivo. The loss of virulence was associated with a defect in acidocalcisome formation, as this unique organelle was grossly altered in tor3- mutants and no longer accumulated polyphosphates. Correspondingly, tor3- mutants showed defects in osmoregulation and were sensitive to starvation for glucose but not amino acids, glucose being a limiting nutrient in the parasitophorous vacuole. Thus, in Leishmania, the TOR kinase family has expanded to encompass a unique role in AC function and biology, one that is essential for parasite survival in the mammalian infective stage. Given their important roles in cell survival and virulence, inhibition of TOR kinase function in trypanosomatids offers an attractive target for chemotherapy.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20551225</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>08</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>107</Volume>
<Issue>26</Issue>
<PubDate>
<Year>2010</Year>
<Month>Jun</Month>
<Day>29</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Expansion of the target of rapamycin (TOR) kinase family and function in Leishmania shows that TOR3 is required for acidocalcisome biogenesis and animal infectivity.</ArticleTitle>
<Pagination>
<MedlinePgn>11965-70</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.1004599107</ELocationID>
<Abstract>
<AbstractText>Target of rapamycin (TOR) kinases are key regulators of cell growth, proliferation, and structure in eukaryotes, processes that are highly coordinated during the infectious cycle of eukaryotic pathogens. Database mining revealed three TOR kinases in the trypanosomatid parasite Leishmania major, as defined by homology to the phosphoinositide 3-kinase-related kinase (PIKK) family and a signature conserved FKBP12/rapamycin-binding domain. Consistent with the essential roles of TOR complexes in other organisms, we were unable to generate null TOR1 or TOR2 mutants in cultured L. major promastigotes. In contrast, tor3(-) null mutants were readily obtained; while exhibiting somewhat slower growth, tor3(-) maintained normal morphology, rapamycin sensitivity, and differentiation into the animal-infective metacyclic stage. Significantly, tor3(-) mutants were unable to survive or replicate in macrophages in vitro, or to induce pathology or establish infections in mice in vivo. The loss of virulence was associated with a defect in acidocalcisome formation, as this unique organelle was grossly altered in tor3- mutants and no longer accumulated polyphosphates. Correspondingly, tor3- mutants showed defects in osmoregulation and were sensitive to starvation for glucose but not amino acids, glucose being a limiting nutrient in the parasitophorous vacuole. Thus, in Leishmania, the TOR kinase family has expanded to encompass a unique role in AC function and biology, one that is essential for parasite survival in the mammalian infective stage. Given their important roles in cell survival and virulence, inhibition of TOR kinase function in trypanosomatids offers an attractive target for chemotherapy.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Madeira da Silva</LastName>
<ForeName>Luciana</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Beverley</LastName>
<ForeName>Stephen M</ForeName>
<Initials>SM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI029646</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI29646</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>06</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016054">DNA, Protozoan</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015800">Protozoan Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.-</RegistryNumber>
<NameOfSubstance UI="D011494">Protein Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.-</RegistryNumber>
<NameOfSubstance UI="C551355">target of rapamycin kinase 3, Leishmania major</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016054" MajorTopicYN="N">DNA, Protozoan</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017125" MajorTopicYN="N">Genes, Protozoan</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018320" MajorTopicYN="N">Leishmania major</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008264" MajorTopicYN="N">Macrophages</DescriptorName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008807" MajorTopicYN="N">Mice, Inbred BALB C</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015388" MajorTopicYN="N">Organelles</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011494" MajorTopicYN="N">Protein Kinases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015800" MajorTopicYN="N">Protozoan Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014774" MajorTopicYN="N">Virulence</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>6</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>6</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>8</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20551225</ArticleId>
<ArticleId IdType="pii">1004599107</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1004599107</ArticleId>
<ArticleId IdType="pmc">PMC2900677</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Exp Parasitol. 2001 Oct;99(2):97-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11748963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Oct 4;277(40):37369-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12121996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 1999 Aug;11(4):432-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10449334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Nov 16;101(46):16085-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15520374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2000 May;25(5):225-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10782091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9258-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10908670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jul 13;276(28):26114-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11371561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2001 Aug;3(8):511-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11488813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2002 Dec;66(4):579-91, table of contents</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12456783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Dec 27;277(52):50899-906</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12393865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Parasitol. 2002 Oct;102(2):117-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12706748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jan 30;279(5):3420-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14615483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cancer. 2004 May;4(5):335-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15122205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Jul 9;118(1):9-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15242640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Repair (Amst). 2004 Aug-Sep;3(8-9):883-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15279773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Repair (Amst). 2004 Aug-Sep;3(8-9):927-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15279778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Mol Med. 2004 Sep;4(6):601-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15357211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2005 Feb;55(4):1034-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15686552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2005 Mar;55(5):1566-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15720561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2005 Mar;3(3):251-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15738951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Parasitol. 2005 May;110(1):39-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15804377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2005 Dec;17(6):596-603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16226444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jan 20;281(3):1516-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16291745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 10;124(3):471-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Apr 4;103(14):5502-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16569701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jul 21;281(29):20068-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16707495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Parasitol. 2006 Sep;22(9):439-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16843727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Dec 15;281(50):38150-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17032644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2007 Jan 1;67(1):1-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17210675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2007 Jul;39(7):839-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17572675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2007 Oct 15;407(2):161-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17635107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Nov 2;282(44):32501-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17827150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2008 Feb;10(2):301-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18070117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D281-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18039703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2008 Jan 24;27(5):585-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17684489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Feb;7(2):212-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18039939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2008 Mar 1;121(Pt 5):561-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18252798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Microbiol Rev. 2008 Apr;21(2):334-59, table of contents</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18400800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14579-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18796613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Oct;7(10):1819-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18723607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Nov 14;283(46):31541-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18801733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2009 Feb;5(2):256-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19139627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2009 Feb 10;7(2):e38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19209957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2009;4(3):363-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19247286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2009 Mar 1;8(5):697-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19221474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2009 Mar;71(6):1386-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19183277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2009 Apr;21(2):194-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19201591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2009;2(67):pe24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19383975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 May 5;106(18):7583-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19383793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2009;78:605-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19344251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2009 Oct 15;122(Pt 20):3589-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19812304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1984 Mar 30;223(4643):1417-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6701528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Parasite Immunol. 1985 Sep;7(5):545-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3877902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1990 Mar;10(3):1084-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2304458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7170-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1651496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Aug 23;253(5022):905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Jan 13;270(2):815-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7822316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 May 23;92(11):4947-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7539137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Nov 17;270(46):27531-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7499212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1996 Jul 12;273(5272):239-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8662507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Oct 1;15(19):5256-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8895571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Parasitol. 1997 Mar;85(3):283-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9085925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 1997 Jun;19(6):469-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9204764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 1997 Dec;18(15):2714-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9504803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Feb 12;274(7):4266-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9933627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Nov 30;294(5548):1942-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11729323</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Missouri (État)</li>
</region>
<settlement>
<li>Saint-Louis (Missouri)</li>
</settlement>
<orgName>
<li>École de médecine (Université Washington de Saint-Louis)</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Beverley, Stephen M" sort="Beverley, Stephen M" uniqKey="Beverley S" first="Stephen M" last="Beverley">Stephen M. Beverley</name>
</noCountry>
<country name="États-Unis">
<region name="Missouri (État)">
<name sortKey="Madeira Da Silva, Luciana" sort="Madeira Da Silva, Luciana" uniqKey="Madeira Da Silva L" first="Luciana" last="Madeira Da Silva">Luciana Madeira Da Silva</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001434 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001434 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20551225
   |texte=   Expansion of the target of rapamycin (TOR) kinase family and function in Leishmania shows that TOR3 is required for acidocalcisome biogenesis and animal infectivity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20551225" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020